Лекция 3. Брокеры сообщений и шины событий: MQTT, QoS, retained, topics, ACL. Очереди и стриминг
Цель лекции: понять роль брокеров сообщений и шин событий в IoT/Smart‑системах, разобрать MQTT (topics, QoS, retained), контроль доступа (ACL), а также различия между очередями сообщений и стриминговыми платформами (Kafka/Pulsar).
1. Зачем в IoT нужен брокер сообщений
В IoT устройства и сервисы должны обмениваться телеметрией и командами в условиях нестабильной сети, ограниченных ресурсов устройств и большого числа участников.
Брокер сообщений решает задачи:
• развязка отправителя и получателя (publisher не знает subscriber);
• буферизация и доставка при временных сбоях;
• масштабирование (много устройств → много потребителей);
• централизованный контроль доступа и аудит;
• маршрутизация сообщений по темам/очередям.
2. Базовые модели обмена
2.1 Publish/Subscribe (pub/sub)
Отправитель публикует сообщение в “канал” (topic). Получатели подписываются на topic и получают сообщения автоматически. Это типовая модель для телеметрии.
2.2 Queue (очередь, point‑to‑point)
Сообщение помещается в очередь и будет обработано одним потребителем (обычно “конкурирующие потребители”). Очереди удобны для задач обработки/команд, где важно распределять работу.
3. MQTT: протокол для IoT
MQTT — лёгкий протокол поверх TCP, оптимизированный для IoT: малый оверхед, поддержка pub/sub, работа на нестабильных каналах. Обычно используется “MQTT over TLS” для защиты.
3.1 Topics и иерархия
Topic — строковый путь (иерархия через “/”), например:
 factory/line1/motor7/telemetry
 factory/line1/motor7/cmd
 factory/line1/+/telemetry (подписка с wildcard)
 factory/# (всё дерево)

Рекомендация: строить topic‑схему по объектной модели (site → line → asset → signal).
Wildcards:
• “+” — один уровень (factory/line1/+/telemetry).
• “#” — все уровни (factory/#).
3.2 QoS: уровни гарантии доставки
QoS (Quality of Service) определяет, как брокер и клиент обеспечивают доставку.
MQTT поддерживает 3 уровня:
• QoS 0 — “at most once”: без подтверждений, возможна потеря. Минимальная задержка/трафик.
• QoS 1 — “at least once”: доставка с подтверждением, возможны дубликаты.
• QoS 2 — “exactly once”: строгая доставка без дубликатов, дороже по задержке и обмену.
Практика:
• телеметрия высокой частоты → QoS 0 или QoS 1;
• события/алармы → QoS 1;
• критичные команды управления → QoS 1 или QoS 2 (реже), плюс подтверждение на уровне приложения.
3.3 Retained messages
Retained — “последнее значение” в topic, которое брокер хранит и отдаёт каждому новому подписчику сразу после подписки.
Полезно для:
• конфигураций и текущего состояния (digital twin shadow light);
• “последнего известного” значения датчика;
• параметров управления/режимов.
Важно: retained — не история. Это один “последний” message. История хранится в БД/TSDB/стриминге.
3.4 Session, keep alive и “last will”
MQTT поддерживает:
• Keep Alive — контроль живости соединения;
• Persistent Session — сохранение подписок/недоставленных QoS1/2 при переподключении;
• Last Will and Testament (LWT) — сообщение, которое брокер публикует, если клиент неожиданно отключился (например, device/status = offline).
4. ACL и безопасность в MQTT
ACL (Access Control List) ограничивает, какие topics клиент может публиковать/подписывать.
Правильный ACL — ключ к безопасности: устройство не должно видеть чужие данные и не должно иметь право публиковать команды другим устройствам.
4.1 Типовая политика ACL (пример)
Пусть deviceId = motor7.
Разрешить publish:
 factory/line1/motor7/telemetry
 factory/line1/motor7/status
Разрешить subscribe:
 factory/line1/motor7/cmd
Запретить всё остальное.
Идентификация клиентов: логин/пароль (хуже), токены (лучше), mTLS‑сертификаты (лучше всего для IoT).
4.2 Дополнительные меры
• TLS/mTLS для шифрования и аутентификации.
• Rate limiting (ограничение частоты публикаций) против “шторма” сообщений.
• Аудит: логирование подключений, отказов ACL, аномальных паттернов.
• Сегментация сети и разделение “prod/test”.
5. Очереди сообщений vs стриминг
Хотя оба подхода “передают сообщения”, у них разная философия.
5.1 Очереди (RabbitMQ/AMQP и др.)
Очередь — это “работа на обработку”. Сообщение забирается одним потребителем и обычно удаляется.
Подходит для:
• распределения задач (обработка изображений/документов);
• команд/заявок;
• “back‑pressure” (когда потребитель медленный).
Ключевые свойства: подтверждение (ack), повторная доставка, dead‑letter queue, TTL.
5.2 Стриминг (Kafka/Pulsar)
Стриминг — это “журнал событий” (append‑only log). Сообщения сохраняются в топиках‑логах и могут читаться многими группами потребителей независимо.
Подходит для:
• больших потоков телеметрии;
• воспроизводимости и переобработки (replay);
• построения data pipeline, feature store, аналитики;• событийной архитектуры (event sourcing).
Ключевые свойства: partitions, consumer groups, retention, offset, exactly-once semantics (в некоторых режимах).
5.3 Когда что выбирать (правило‑памятка)
• Нужна лёгкая связь устройств и командный канал → MQTT.
• Нужны очереди задач и гарантии обработки одной копией → AMQP/очереди.
• Нужен “журнал событий”, повторное воспроизведение и масштабирование по потоку → Kafka/Pulsar.
На практике часто используют связку: MQTT (ingress) → стриминг (Kafka) → обработка → БД.
6. Типовая архитектура для производства
1) Датчики/PLC публикуют телеметрию в MQTT брокер (QoS 0/1) через TLS.
2) Брокер применяет ACL и маршрутизирует по topics.
3) Коннектор/bridge забирает сообщения и пишет в Kafka (стриминг) для хранения журнала и аналитики.
4) Stream processing (Flink/Spark/самописный сервис) считает агрегаты, алармы, признаки.
5) В TSDB сохраняются тренды, в CMMS/MES уходят события.
6) Команды управления идут в MQTT topic /cmd, устройство подписано и подтверждает выполнение на уровне приложения.
7. Ошибки проектирования (частые)
• Одна тема “everything” без иерархии → невозможно управлять доступом и масштабировать.
• Использование QoS 2 “везде” → лишние задержки и нагрузка.
• Отсутствие ACL и уникальной идентификации устройств → компрометация одного устройства = доступ ко всему.
• Смешивание телеметрии и команд в одном topic без разделения и подтверждения выполнения.
• Надежда на retained как “историю” → потеря данных; историю нужно хранить в БД/стриминге.
8. Итоги
• MQTT — основной протокол pub/sub для IoT: topics, QoS, retained, LWT.
• ACL + TLS/mTLS — основа безопасности брокера.
• Очереди — для распределения задач; стриминг — для журнала событий и аналитики.
• Практическая связка: MQTT ingress → (bridge) → Kafka/Pulsar → stream processing → storage/analytics.
Самопроверка (6 вопросов)
• Зачем брокер сообщений нужен в IoT и что он “развязывает”?
• Как выбрать QoS для телеметрии, алармов и команд?
• Что такое retained и чем он отличается от истории?
• Как строить topic‑иерархию для производства (пример)?
• Что такое ACL и почему без него небезопасно?
• В чём концептуальная разница между очередями и стримингом?
